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Abstract Purpose: To assess the
effects of alveolar recruitment
maneuvers (ARMs) on clinical out-
comes in patients with acute
respiratory distress syndrome
(ARDS). Methods: We conducted a
search of the MEDLINE, EMBASE,
LILACS, CINAHL, CENTRAL,
Scopus, and Web of Science (from
inception to July 2014) databases for
all (i.e. no language restriction) ran-
domized controlled trials (RCTs)
evaluating the effects of ARMs ver-
sus no ARMs in adults with ARDS.
Four teams of two reviewers inde-
pendently assessed the eligibility of
the studies identified during the
search and appraised the risk of bias
and extracted data from those which
were assessed as meeting the inclu-
sion criteria. Data were pooled using
the random-effects model. Trial
sequential analysis (TSA) was used to
establish monitoring boundaries to
limit global type I error due to
repetitive testing for our primary
outcome (in-hospital mortality). The
GRADE system was used to rate the
quality of evidence. Results: Our
database search identified ten RCTs
(1,594 patients, 612 events) which
satisfied the inclusion criteria. The
meta-analysis assessing the effect of
ARMs on in-hospital mortality
showed a risk ratio (RR) of 0.84
[95 % confidence interval (CI)
0.74–0.95; I2 = 0 %], although the

quality of evidence was considered to
be low due to the risk of bias in the
included trials and the indirectness of
the evidence—that is, ARMs were
usually conducted together with other
ventilatory interventions which may
affect the outcome of interest. There
were no differences in the rates of
barotrauma (RR 1.11; 95 % CI
0.78–1.57; I2 = 0 %) or need for
rescue therapies (RR 0.76, 95 %
CI 0.41–1.40; I2 = 56 %). Most trials
found no difference between groups
in terms of duration of mechanical
ventilation and length of stay in the
intensive care unit and hospital. The
TSA showed that the available evi-
dence for the effect of ARMs on in-
hospital mortality is precise in the
case of a type I error of 5 %, but it is
not precise with a type I error of 1 %.
Conclusions: Although ARMs may
decrease the mortality of patients
with ARDS without increasing the
risk for major adverse events, current
evidence is not definitive. Large-scale
ongoing trials addressing this ques-
tion may provide data better
applicable to clinical practice.
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Introduction

Acute respiratory distress syndrome (ARDS) represents a
serious problem in critically ill patients and is associated
with an in-hospital mortality of between 33 and 52 % [1–
3]. Although mechanical ventilation provides essential
life support, it can worsen lung injury by regional alveolar
overdistention, cyclic alveolar collapse with shearing
(atelectrauma), and failure of collapsed alveolar units to
re-open [4–6].

Atelectrauma plays a major role in ARDS [7] and may
contribute to mortality [8]. In this context, the re-opening/
re-expansion of collapsed lung tissue by alveolar
recruitment maneuvers (ARMs) through the transient
raising of transpulmonary pressure to levels higher than
those achieved during tidal ventilation [9] and preventing
further collapse by using positive end-expiratory pressure
(PEEP) may prevent atelectrauma. However, the appli-
cation of ARMs in clinical practice remains controversial
because such interventions increase intrathoracic pres-
sure, reduce venous return, and may increase the risk of
barotrauma.

The results of previous randomized controlled trials
(RCTs) and systematic reviews on the effects of ARMs on
survival, length of mechanical ventilation, and/or length
of hospital stay of ARDS patients have been inconclusive
[10–13]. However, other RCTs have been completed
since these reviews were published, requiring a new
appraisal of current evidence on the use of ARMs for
ARDS. Therefore, we have conducted a systematic
review and meta-analysis of the relevant RCTs to assess
the effect of ARMs on mortality and other clinical out-
comes in patients with ARDS. Part of the data included in
this review has been presented as a poster at an interna-
tional scientific meeting [14].

Methods

The recommendations of the Cochrane handbook for
systematic reviews of interventions and of the PRISMA
Statement—preferred reporting items for systematic
reviews and meta-analyses—were followed during the
design, implementation, and reporting of this study [15,
16]. The study protocol was approved by the Research
Ethics Committee of São Paulo University on 29 August
2013 [Electronic Supplementary Material (ESM)].

Data sources and searches

We searched the following electronic databases (from
inception to 1 July 2014): MEDLINE, EMBASE,

LILACS, Cumulative Index to Nursing and Allied Health
Literature (CINAHL), Cochrane Central Register of
Controlled Trials (CENTRAL), Scopus, and Web of
Science for relevant articles. We placed no language
restrictions and used controlled vocabulary whenever
possible (MeSH terms for MEDLINE and CENTRAL;
EMTREE for EMBASE). Keywords and their synonyms
were used to optimize the search, and applied standard
filters were used to identify RCTs. We adapted our
MEDLINE search strategy for use with other electronic
databases (see terms used in ESM Table 1). We also
hand-searched the reference lists of the included studies to
identify other relevant trials. Finally, we attempted to
identify unpublished or ongoing trials by contacting
experts in the field and by searching clinical trial regis-
tries [ClinicalTrials.gov and International Standard
Randomised Controlled Trial Number (ISRCTN)
Register].

Study selection

We included RCTs that have assessed the clinical effects
of ARMs compared to no recruitment maneuvers in adult
patients with ARDS. The ARM could have been applied
as an isolated intervention or as part of a ventilation
package. However, we did not include trials that applied
different tidal volumes between groups because low tidal
volume has a proven beneficial effect on mortality [17,
18]. Observational studies and trials that enrolled exclu-
sively patients with barotrauma were excluded, as were
randomized cross-over trials, as there may have been
carry-over effects, which may have led to a bias on the
effect of ARMs on clinical outcomes.

We defined an ARM as any technique that transiently
increased the alveolar pressure above that of regular tidal
ventilation, including—but not limited to—maneuvers
involving sustained inflation, stepwise increase of PEEP,
increase in tidal volume or controlled pressure, and
extended sigh maneuvers.

Four teams of two reviewers (EAS teamed with
KNS, LL, AMB, and DB, respectively) independently
screened all retrieved citations by reviewing titles and
abstracts. If at least one of the authors considered a
citation potentially eligible for inclusion in our system-
atic review, the full text was obtained. Then, the four
teams of two reviewers independently evaluated full-text
manuscripts for eligibility using a standardized form
(ESM). Duplicate publications or sub-studies of included
trials were listed under the primary reference, as they
may have provided additional relevant information that
was not available in the original publication. Any dis-
agreement within each team was resolved by third-party
adjudication.
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Data extraction and risk of bias assessment

The four teams of two reviewers independently extracted
clinical data and assessed the risk of bias. Any disagree-
ment was resolved by consensus or third-party
adjudication. If additional information was required, we
contacted the original authors by e-mail.

The following data were extracted from the included
studies: study location, enrollment period, sample size,
inclusion and exclusion criteria, baseline characteristics
of the included patients, details of the experimental
intervention (type and frequency of ARM, method used to
adjust PEEP after ARM, and maintenance ventilation),
details of control intervention, length of follow-up, and
clinical outcomes.

The risk of bias of the included studies on our primary
outcome was assessed by domain-based evaluation [15].
The domains assessed in this review were random
sequence generation, allocation concealment, incomplete
outcome data, selective outcome reporting, and early
stopping for benefit. We did not assess the domains related
to blinding of personnel, patients, or outcome assessors for
the following reasons: (1) due to the nature of the inter-
vention, it is not feasible to blind investigators and
healthcare personnel to group allocation; (2) we assumed
that participants were unaware of group allocation because
they were critically ill or generally sedated, and consent
for participation in the study was given by the next of kin;
(3) blinding of outcome assessors would not introduce a
differential detection bias because the primary outcome
assessed was mortality. For the remaining domains, we
indicated ‘‘low risk of bias,’’ ‘‘high risk of bias,’’ or
‘‘unclear.’’ We considered trials with ‘‘lower risk of bias’’
to indicate those at low risk of bias in all domains assessed.

Outcomes

The primary outcome was in-hospital, all-cause mortality.
If the authors did not report in-hospital mortality, we con-
sidered the relevant data at the maximum follow-up period
reported. Secondary outcomes were barotrauma (pneumo-
thorax, pneumomediastinum, subcutaneous emphysema, or
pneumatocele), the need for rescue therapies (prone posi-
tion, nitric oxide, high-frequency oscillatory ventilation, or
extra-corporeal membrane oxygenation), the duration of
mechanical ventilation (expressed as days free of mechan-
ical ventilation from randomization to day 28 and mean or
median number of days of mechanical ventilation), length
of stay in the hospital and intensive care unit (ICU), and
other adverse events.

Data synthesis and analysis

We presented the risk ratios (RR) and their respective
95 % confidence intervals for the binary outcomes of each

trial. Meta-analysis was performed using the Mantel–Ha-
enszel random effects model. Values for continuous
outcomes were given as the mean ± standard deviation or
as the median with the interquartile range. Three pre-
specified subgroup analyses were conducted for the pri-
mary outcome: (1) trials with higher risk of bias versus
trials with lower risk of bias; (2) adjusted PEEP levels
after ARM in the experimental group versus similar PEEP
levels in both groups; (3) ARM achieving a peak pressure
of B40 cmH2O versus ARM achieving peak pressure of
[40 cmH2O. We assessed statistical heterogeneity across
trials or subgroups using the Cochrane’s chi-squared test
[15], and the Higgins’ inconsistency test (I2) was used to
quantify the percentage of the variability in the effect
estimates that was due to heterogeneity rather than chance.
We considered I2 B 25 % to indicate low heterogeneity
and C75 % to indicate high heterogeneity [19]. We ana-
lyzed the probability of publication bias by funnel plot and
considered plot asymmetry to be suggestive of reporting
bias. Plot asymmetry was tested using Egger’s test [20,
21]. All analyses were performed using the Review
Manager Version 5.2 (Cochrane IMS, Oxford, UK) and
Stata version 11.0 (StataCorp, College Station, TX).

As the event size needed for a very precise meta-
analysis is at least as large as that for a single optimally
powered RCT, we calculated the optimal event size
requirement for our meta-analysis considering a mortality
rate of 36 % in the control group [3], a relative risk
reduction of 20 %, 90 % of power, and a type I error of
5 %. We chose a relative risk reduction of 20 % to cal-
culate the optimal event size in order to have adequate
power to detect even a small but clinically important
effect; furthermore, this risk reduction value is the typical
effect size observed in intensive care studies [17, 22].
Thus, the observation of at least 575 events would be
needed. We did a formal trial sequential analysis (TSA;
TSA software version 0.9 Beta; Copenhagen Trial Unit,
Copenhagen, Denmark) [23] by using the optimal event
size to help to construct sequential monitoring boundaries
for our meta-analysis, analogous to interim monitoring in
a RCT. We established boundaries limiting the global
type I error to 5 %. As a sensitivity assessment, we also
conducted TSA considering a more strict type I error of
1 %. This more conservative approach may be appropri-
ate for a meta-analysis of small trials [24].

Quality of meta-analysis evidence

The quality of evidence generated by this meta-analysis
was classified as high, moderate, low, or very low in
accordance with the Grading of Recommendations
Assessment, Development and Evaluation (GRADE)
system [25]. The quality of evidence indicates our con-
fidence that the evidence generated by the meta-analysis
is definitive. According to the GRADE system, a precise
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result (associated with low random error or a small
P value) is necessary but not the only criterion for a
summarized evidence to be of high quality. The level of
evidence of the meta-analysis was initially set as high and
was downgraded when any of the following were present:
high risk of bias, imprecision of estimate of effect, indi-
rectness of evidence, inconsistency, or evidence of
reporting bias. Evidence classified as ‘‘at high risk of
bias’’ means that most of the included trials showed a
high risk of bias in at least one of the domains assessed.
‘‘Imprecision’’ of estimates of effect indicates that there
was a non-acceptable random error in the estimate of
effect generated by the meta-analysis. ‘‘Indirectness’’ of
evidence occurred when there were differences between
the population, intervention, comparator, and outcome of
the research question, and those included in the relevant
studies. That is, there is ‘‘indirectness’’ if the review
question was not directly addressed by the available
evidence. ‘‘Inconsistency’’ indicates that the results of the
individual trials differed from each other. Finally,
‘‘reporting bias’’ occurred when investigators failed to
report studies (typically those that showed no effect) or
outcomes (typically those that may be harmful or for
which no effect was observed). We used the GRADE pro
version 3.6 (GRADE Working Group).

Results

Our search strategy identified 9,451 citations, from which
3,279 were duplicates (Fig. 1). After screening titles and
abstracts, we selected the full-text version of 56 relevant
citations for an in-depth analysis, of which 47 were sub-
sequently excluded for the reasons listed in the Fig. 1
(details are given in ESM Table 2). Before excluding the
five trials that did not report clinical outcomes, we con-
tacted the authors to obtain missing data but received no
response. In addition, we identified one unpublished trial
through contact with experts and obtained data relevant to
our primary outcome at a conference attended by the
authors [26]. As a result, ten trials involving a total of
1,594 participants were included in our systematic review
and meta-analysis [11, 26–34].

Characteristics of included trials

The included trials were published between 2003 and
2011. Two trials were published in Chinese [29, 30]. The
sample size ranged from 17 to 985 patients. The charac-
teristics of the trials are listed in Table 1.

All included trials defined ARDS according to
American–European consensus conference (AECC) cri-
teria [35]. Although two trials enrolled patients with
PaO2/FiO2 (partial pressure of oxygen in arterial blood/

fraction inspired oxygen) of B250 mmHg (that is,
patients with acute lung injury according to the AECC
definition), most of the patients at these trials had a PaO2/
FiO2 of B200 mmHg at inclusion (85 % of patients in the
trial conducted by Meade et al. [11] and 91 % of those in
the trial conducted by Liu et al. [34]).

The ARMs were different in type, duration, and
intensity across the studies. Four trials assessed the effect
of sustained inflation [11, 28, 30, 32], two studies per-
formed ARM by stepwise increase of PEEP with constant
driving pressure [26, 33], two studies used stepwise
increase of PEEP with stepwise decrease of tidal volume
[27, 31], and one trial performed one-step increase of
PEEP while maintaining the driving pressure at
15 cmH2O [34]. The type of ARM was not clearly stated
in one trial [29]. Four trials adjusted PEEP levels after the
ARM in the experimental group [11, 26, 31, 33], and six
trials used the same PEEP levels in both groups [27–30,
32, 34]. One trial evaluated the effect of ARM on patients
already receiving nitric oxide therapy [28]. In one trial,
patients in both groups were subject to the same ventilator
settings and co-interventions, allowing the assessment of
the effects of ARMs alone [32]. Lim et al. also used the
same ventilator settings; however, more patients in the
experimental group were managed in the prone position
[27].

Risk of bias

Three trials were considered to be at a lower risk of bias
because they showed a low risk of bias in all of the
domains assessed [11, 26, 33]. In four trials, the genera-
tion of the randomization list and the allocation
concealment were adequate [11, 26, 32, 33], in one trial,
the allocation list was not concealed [30], and in the
remaining five trials insufficient information on the ran-
domization method or allocation concealment was
provided. Outcome data on mortality was complete in
seven trials [26–30, 33, 34]. In one trial, two of the 985
patients were not included in the analysis [11]. We clas-
sified two trials as being at a high risk of attrition bias
because of post-randomization exclusions [31, 32]. In the
trial by Huh et al., one patient from the experimental
group and three in the control group were excluded due to
low blood pressure [31]. In the study by Xi et al., 12
patients in the experimental group and three in the control
group were excluded because they did not adhere to the
study protocol [32]. None of the trials were stopped early
for benefit (ESM Table 3).

Primary outcome

Ten trials [11, 26–34] were included in our meta-analysis
assessing the effect of ARM on the mortality of patients
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with ARDS (Fig. 2). In-hospital mortality was 36 % in
the ARM group and 42 % in the control group (RR 0.84;
95 % CI 0.74–0.95; I2 = 0 %). The total number of
deaths was 612, which is greater than the optimal event
size (575 events); that is, the TSA indicated an overall
type I error of \5 % for the meta-analysis result. Con-
versely, when a more conservative type I error of 1 % was
considered, the number of events is insufficient, and the
cumulative meta-analysis did not cross the efficacy-
monitoring boundary (Fig. 3).

The funnel plot was visually asymmetric (P = 0.055),
and although not statistically significant, it suggests that
publication bias or bias associated with smaller trials may
be an issue (ESM Fig. 1).

Secondary outcomes

The effects of ARMs on secondary outcomes are pre-
sented in Fig. 2. Recruitment maneuvers were not
associated with an increased risk of barotrauma (RR 1.11;
95 % CI 0.78–1.57; I2 = 0 %). Length of mechanical
ventilation and length of stay in ICU and hospital were
reported using different metrics among the trials; there-
fore, we did not conduct a meta-analysis using data on
these parameters. Most of the trials showed no between-

group differences in the length of mechanical ventilation
and length of time in the ICU or hospital (Table 2). There
was also no difference in the rates of severe hypoxemia
requiring rescue therapies between groups (RR 0.76;
95 % CI 0.41–1.40; I2 = 56 %). The most commonly
observed adverse effects after ARM were transient
hypotension and desaturation (ESM Table 4).

Subgroup analyses

Pooled analysis of the trials with a lower risk of bias
showed a smaller effect on mortality (RR 0.90; 95 % CI
0.78–1.04; I2 = 0 %) than the pooled analysis of trials
with higher risk of bias (RR 0.72; 95 % CI 0.58–0.89;
I2 = 0 %); the P value for subgroup differences was 0.09
(Fig. 4). The effect of ARM on mortality on the subgroup
of trials that adjusted PEEP after ARM in the experi-
mental group was less pronounced (RR 0.89; 95 % CI
0.78–1.03; I2 = 0 %) than that in the subgroup with
similar PEEP levels (RR 0.69; 95 % CI 0.54–0.88;
I2 = 0 %); the P value for subgroup differences was 0.07
(ESM Fig. 2). The effect of ARM on mortality was
similar in the subgroup of studies in which the ARM
reached a peak pressure of B40 cmH2O (RR 0.83, 95 %
CI 0.71–0.97; I2 = 6 %) compared to the subgroup with a

Fig. 1 Study search and
selection processes. RCT
Randomized clinical trial, ARM
alveolar recruitment maneuver
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peak pressure of [40 cmH2O (RR 0.85; 95 % CI
0.65–1.12; I2 = 0 %); the P for subgroup differences was
0.84 (ESM Fig. 3).

Quality of the meta-analysis evidence

We classified the quality of evidence generated by the
meta-analysis for the primary outcome as low. Our rea-
sons for downgrading the quality of evidence were the
risk of bias of the included studies and the indirectness of
evidence. We considered that the current evidence was
indirect because most of the trials assessed ARM as part
of a ventilatory package, with differences in other vari-
ables beyond ARM, and not as an isolated intervention.
Furthermore, publication bias and the imprecision of
estimate of effect could not be completely ruled out.

Discussion

Our systematic review suggests that ARMs are associ-
ated with lower mortality in patients with ARDS. Our
meta-analysis revealed that the difference in mortality
was approximately 6 %, suggesting that for every 17
patient with moderate to severe ARDS treated with
ARM, one in-hospital fatal event was prevented.
Although fewer patients who received ARMs received
rescue therapies for refractory hypoxemia, this benefit
was not statistically significant. Furthermore, ARMs
were not associated with an increase in the risk of
barotrauma. Most trials showed no differences between
the groups in terms of the length of mechanical venti-
lation and the length of stay in the ICU or hospital, and
other adverse events seemed to be transient and self-
limited. Additionally, most patients (90 %) included in
the primary studies had moderate to severe ARDS
according to the Berlin definition, which is a PaO2/FiO2

of B200 mmHg [36]. In this context, we believe that the
result of our primary analysis is applicable to patients
with moderate–severe ARDS.

The reduction of atelectrauma is the mechanism that
possibly mediates the beneficial effect of ARMs on
mortality. In support of this notion, experimental and
clinical evidence suggests that it is important to adjust
PEEP after ARM in order to maintain alveoli opening
[37–39]. Conversely, performing ARM and returning to
previous PEEP causes transient alveoli distention with no
prolonged benefit [12, 40]. However, in our subgroup
analysis, the effect was not different between the sub-
group that adjusted PEEP after ARM and the subgroup
that did not. It is important to note that the trials without
PEEP adjustment in the ARM group are also the smaller
ones, which are at a higher risk of bias and more likely to
report beneficial effects.T
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It is possible that the effect of ARMs would be more
pronounced if all of the studies had performed maneuvers
achieving a pressure of[40 cmH2O. Previous case series
suggest that 54–71 % of patients with ARDS who
received an ARM require [40 cmH2O to achieve full

recruitment [38, 39]. We performed a subgroup analysis
to explore the heterogeneity of studies according to ARM
methodology and its potential effect on mortality. Our
result showed that the effect of ARMs was similar in both
subgroups. Nevertheless, it is possible that other

Fig. 2 Forest plots showing the effects of ARMs on clinical outcomes of patients with acute respiratory distress syndrome (ARDS). CI
Confidence interval, M–H Mantel–Haenszel test. See Table 1 for more detail on the study or subgroup
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differences between studies could explain the similar
effect. For example, five of six studies using ARMs at
[40cmH2O also were at higher risk of bias.

Two previous systematic reviews evaluated ARMs for
patients with ARDS [12, 13]. The first review included 40
randomized and non-randomized studies [12], of which
four were RCTs with distinct design features and out-
comes: one applied ARMs to both groups [41], one was a
cross-over trial [9], a third did not report effects on
clinical outcomes [40], and the fourth was a preliminary
report of the LOV study [42]. This review focused mostly
on short-term effects, such as oxygenation and adverse
events and did not perform meta-analysis due to hetero-
geneity in populations, interventions, and study outcomes
between trials. The second review published by Hodgson
et al. [33] assessed the effects of ARMs on clinical out-
comes and found no benefit on survival. This review
included seven trials, but only two of these [10, 11] were
considered for the meta-analyses assessing the effect on
mortality. In our review, we identified nine additional
trials [26–34]. Conversely, we decided not to include the
trial that also used lower tidal volumes in the experi-
mental group [10] because this intervention has a proven
beneficial effect on mortality [17].

Table 2 Duration of mechanical ventilation, length of stay in
intensive care unit and hospital

First author/year ARM group Control group P

Duration of mechanical ventilation (days)
Wang/2007 [30] 14 (3) 19 (3) \0.01
Huh/2009 [31] 19.8 (2.7) 15.2 (16.62) 0.38
Liu/2011 [34] 9 [7–12] 15 [10–24] \0.01
Hodgson/2011 [33] 7.5 [3.6–12.4] 14.2 [5.4–14.6] 0.13
Xi 2010 [32]a 10.8 (10.1) 7.4 (10) 0.08

Length of stay in intensive care unit (days)
Wang/2007 [30] 5 (26) 5 (19) 1.00
Huh/2009 [31] 25.1 (30.67) 21.4 (27.54) 0.64
Xi/2010 [32] 22.5 (22.2) 19.8 (24.8) 0.06
Meade/2008 [11] 13 [8–23] 13 [9–23] 0.96
Liu/2011 [34] 10 [7–14] 16 [11–29] \0.01
Hodgson/2011 [33] 9.9 [5.6–14.8] 16.0 [8.1–19.3] 0.19
Long/2006 [29]b 11 [5–16] 3 [0–8] \0.05

Length of hospital stay (days)
Xi/ 2010 [32] 43.2 (45.6) 33.2 (34) 0.12
Meade/2008 [11] 28 [17–48] 29 [16–51] 0.96
Hodgson/2011 [33] 17.9 [13.7–34.5] 24.7 [20.5–39.8] 0.16

Data are presented as the mean with the standard deviation in
parenthesis, or as the median with the interquartile range in square
brackets
a Number of days free of mechanical ventilation in a 28-day period
b Number of days not in the intensive care unit in a 28-day period

Fig. 3 Trial sequential analysis assessing the effect of ARMs on in-
hospital mortality. Cumulative meta-analysis with 612 in-hospital
deaths (blue line) crossed the efficacy monitoring boundary for the
primary outcome—i.e., overall type 1 error is \5 % (purple line).
Considering a global type I error of 1 %, the cumulative meta-

analysis did not cross the efficacy monitoring boundary and the
optimal event size of 814 (green line) was not reached. Optimal
event size Event size needed for a very precise meta-analysis
(which is at least as large as that for a single optimally powered
randomized controlled trial)
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Our review has a number of strengths. First, our search
strategy was comprehensive, including seven electronic
databases, clinical trial registries, contact with experts, and
hand-searches the reference list of included and other rel-
evant studies. Secondly, we conducted eligibility
assessment and data extraction in duplicate. Thirdly, we
evaluated the reliability and conclusiveness of the available
evidence through a method of formal TSA. Finally, we
evaluated the quality of evidence using the GRADE system.

However, our review has a number of limitations that
merit consideration. First, although our review was based
on a pre-specified protocol, it was not pre-published.
Second, because we had only trial aggregate data avail-
able instead of individual patient data, we were unable to
explore the effects of ARMs in some important sub-
groups. For example, it is possible that the ARMs are only
beneficial in patients with moderate and severe ARDS.
However, two trials included all the spectrum of ARDS
and did not report outcomes according to severity [11,
34]. Nevertheless, more than 90 % of patients considered
in this review had moderate or severe ARDS. Third,
information on some outcomes was not available from all
studies. Fourth, in some trials, ARMs were applied
inconsistently and sometimes linked to mechanical ven-
tilator disconnections, and we did not explore the effect of
ARM repetitions. Additionally, the ventilator settings to
perform ARM and the method to set PEEP varied across

trials. Finally, other differences of management were
substantial between trials; for example, in one trial, all
patients received nitric oxide [28], one allowed for ven-
tilation in the prone position (with a higher percentage of
patients in the ARM group receiving prone ventilation)
[27], and three trials used continuous doses of paralytics
for all patients [27, 28, 31].

We classified the quality of evidence generated by this
meta-analysis as low. The main reasons for downgrading
the quality of the evidence were the high risk of bias
observed in most of the trials and the indirectness of
evidence. We considered that the evidence was indirect
because our research question was to determine the effect
of ARM on mortality. Conversely, the evidence we
gathered involved the assessment of ARM as part of a
mechanical ventilation package with adjustments in sev-
eral variables other than ARM. Furthermore, despite our
comprehensive search, we cannot completely rule out
publication bias because the funnel plot was visually
asymmetric, although the formal test for funnel plot
asymmetry was non-significant [21]. Moreover, although
the cumulative meta-analysis achieved optimal event size
with a global type I error rate of 5 %, it did not meet the
optimal event size or efficacy-monitoring boundaries with
a more conservative global type I error of 1 %. Thus,
there is still some chance that future research may con-
tradict current evidence [23, 24].

Fig. 4 Forest plots showing the effects of ARMs on in-hospital mortality for the subgroup of trials with a lower risk of bias versus trials
with a higher risk of bias. See Table 1 for more detail on the study or subgroup
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In conclusion, our meta-analysis assessing the effects
of ARMs on patients with ARDS suggests a benefit on
survival without an increasing risk for major adverse
events. However, the quality of the current evidence is
low and insufficient in terms of allowing for definitive and
reliable conclusions. Thus, further research is likely to
impact our confidence in the estimate of the effect and
may change the estimate. Ongoing trials [43, 44] may
better determine whether ARMs should be routinely
applied for improving clinical outcomes of patients with
ARDS.
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